If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+220=0
a = -4; b = 0; c = +220;
Δ = b2-4ac
Δ = 02-4·(-4)·220
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*-4}=\frac{0-8\sqrt{55}}{-8} =-\frac{8\sqrt{55}}{-8} =-\frac{\sqrt{55}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*-4}=\frac{0+8\sqrt{55}}{-8} =\frac{8\sqrt{55}}{-8} =\frac{\sqrt{55}}{-1} $
| A=1/2(2n)(n+5) | | (-45+x)÷7=-5 | | 3k+1=91 | | X+x+2+x+6+x+10+3x=-(-21) | | c+4c+c-9=105 | | 5/13x-45=65 | | 8p+3-3p+p=60-3 | | 8x+-36=16 | | 2012x=6x | | 4x-7(x+20=85 | | 61=4y-15 | | -4(9x+7)=16 | | 3(4v+6)-7=-25 | | 5(2x+3)=40-10x | | 1/10y-6=-6 | | -5z-11+6z-3=-18 | | 4m+6=18m= | | 2(x+4)+7(x–5)+3= | | 2m+11+3m=31 | | (3x)(3)+(2+6)(3)=0 | | 2m+11=3m-31 | | z^2+16=-26 | | n+3/6=5 | | x/8-5=12 | | 4x+33=7x | | 8.6/2.4=x/6 | | 3x*3+2-6*3=0 | | x+2x/2=1.2 | | 7.3n=-12 | | X-8+20=4x2 | | 0.5(x-12)=2(x+4) | | 2y+1=3(y-1)-2 |